

    
      
          
            
  
Fabber models for DSC-MRI
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These models use the
Fabber Bayesian model fitting framework [https://fabber-core.readthedocs.io/]
1 to implement a two models
for Dynamic Susceptibility Contrast MRI (DSC-MRI).

If you are simply looking to process standard
DSC data you should probably look instead at the
Verbena [https://verbena.readthedocs.io] tool which
uses Fabber_DSC as its modelling implementation. This documentation
provides a little more details on the model implementation for
people who are interested in using the models directly.


Getting FABBER_DSC

The DSC models are included as part of FSL [https://fsl.fmrib.ox.ac.uk/fsl/]. Version 6.0.1
or later is strongly recommended - this documentation describes the version of the DSC
models included in the current FSL release.



Models included

Two DSC models are included in the maintained release. The essential difference
between them is the means used for estimating the residue function which
describes how the DSC tracer is dissipated after it arrives at the tissue.

The standard vascular model uses a simplified theoretical model for the residue
function, whereas the CPI model makes no assumptions about its shape (apart
from being a decreasing function) and models the shape as an interpolated curve
between a set of ‘control points’.

For a more detailed overview of the theoretical differences between these models,
see Theory.


The standard vascular model 2

This model is selected using --model=dsc. Options specific to this
model are:


	--infermtt

	If specified, infer mean transit time



	--usecbv

	Infer the CBV parameter as a means of modelling the transit time



	--inferlambda

	Infer the lambda parameter in the mean transit time distribution



	--inferret

	Infer tracer retention parameter. This is the proportion of the
tracer which remains in the tissue and is not removed by the residue
function.





--infermtt and --usecbv are alternatives which cannot be used together. With
--usecbv the CBV parameter is estimated and the MTT is derived from that whereas
with ``–infermtt` the MTT is estimated directly.



The control point interpolation model 3

This model is selected using --model=dsc_cpi. Options are:


	--num-cps

	Number of control points



	--infer-cpt

	If specified, infer the time position of control points as well as their amplitude





Initially, control points are spaced evenly across the time course. infer-cpt can be used
to allow these initial time positions to vary, however in general this is not recommended as it can lead to instability in the output. A more detailed model of the residue function is better achieved by increasing the number of control points.



Options common to both models


	--te

	TE echo time in s



	--delt

	Time separation between volumes in minutes



	--aif

	ASCII matrix containing the arterial signal



	--aifsig

	Indicate that the AIF is a signal curve



	--aifconc

	Indicate that the AIF is a concentation curve



	--inferdelay

	Infer AIF delay



	--disp

	Apply dispersion to AIF



	--inferart

	Infer arterial component



	--artoption

	Add signals rather than concentrations



	--convmtx

	Type of convolution matrix: simple or voltera





--disp attempts to model the dispersion of the AIF during vascular transport by
performing a convolution with a gamma function. The parameters of the convolution are
estimated and returned as disp_s and disp_p.

--artoption is only relevant when using --inferart. It causes the arterial
contribution to the output to be a sum of the signals from the arterial and tissue
components. Without this option, the DSC tracer concentration in a voxel is calculated
from the sum of the concentration contributions from arterial and tissue components,
and the resulting DSC signal is derived from this.



AIF specification

The AIF should be provided as a series of values in an ASCII text file, listed one per line.
There should be one value for each volume in the DSC data. Often the AIF is measured from the
data itself by averaging the signal over an ROI which covers a major artery. In this case
the --aifsig option should be used (AIF is a signal curve).

Some tools for extracting an AIF from DSC data instead return a set of values representing
the concentration of the DSC tracer in the blood. In this case, --aifconc should be used
instead of --aifsig.

If --inferdelay is specified, the model will incorporate a voxelwise delay in the arrival
of the bolus, i.e. the AIF for a voxel will be the specified curve time shifted by the delay.
The delay value will be estimated within the Bayesian framework in the same way as the other
model parameters.




Examples

Standard vascular model on DSC data collected every 6s using a measured AIF signal:

fabber_dsc --data=dsc_data --mask=brain_mask
           --method=vb --noise=white
           --model=dsc
           --te=0.085 --delt=0.1
           --aif=aif_signal.txt --aifsig --inferdelay
           --output=dsc_output --overwrite --save-model-fit





Similar, but using the CPI model and an AIF concentration-time curve:

fabber_dsc --data=dsc_data --mask=brain_mask
           --method=vb --noise=white
           --model=dsc_cpi --num-cps=10
           --te=0.085 --delt=0.1
           --aif=aif_conc.txt --aifconc --inferdelay
           --output=dsc_output --overwrite --save-model-fit
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Theory


The Vascular Model

The Vascular Model was originally proposed by Ostergaard et al 1. and was used for the analysis of DSC
data (within a Bayesian like algorithm) by Mouridsen et al. 2. The basic principle follows all
tracer kinetic studies and treats the concentration of contrast agent in the tissue as the convolution
of an arterial input function (AIF) and a residue function.


\[C(t) = CBF\int_0^t{C_a(\tau)R(t-\tau)d\tau}\]

Where \(C_a\) is the arterial concentration as a function of time (AIF) which describes the
supply of tracer by the blood and \(R(t)\) is the residue function which describes the dissipation of the
tracer once it has arrived - for example how long a unit of contrast agent remains before it is removed to the venous
vasculature. . \(CBF\) is the cerebral blood flow which scales the concentration.

In the context of DSC-MRI the convolution model is applied to each voxel in turn and the
residue function represents the residence of the agent within the tissue volume described by the voxel.
In the healthy brain the Gadolinium tracer that is used in DSC-MRI does not leave the vasculature and
thus the residue function encapsulates the transit of the contrast agent through the capillary bed.
In fact the residue function is the integral of the distribution of transit times for blood passing
through the voxel - a key parameter of which is the mean transit time (MTT), which is routinely used
in DSC perfusion as a surrogate measure of perfusion (although it is often calculated without finding
the transit distribution itself).

The Vascular Model assumes that the transit time distribution can
be modelled as series of parallel pathways of differing lengths that can be summered by a gamma
distribution of transit times.


\[R(t) = \int_t^\infty{\frac{1}{\beta^\alpha\Gamma(\alpha)} t^{\alpha-1} e^{\frac{-t}{\alpha}}}\]

Here \(\alpha > 0\) and \(\beta > 0\) describe the shape and scale of the transport distribution.
\(\alpha\beta\) is the mean of the distribution which can be identified as the mean transit time
(MTT) of the tracer.

In practice DSC measures the effect that this concentration of contrast agent has
on the T2* of the voxel which is described by a non-linear transformation.


\[S(t) = S_0e^{r_2C(t)TE}\]

Where \(S_0\) is the baseline signal before the bolus arrives and \(r_2\) is the T2 relaxivity
of the contrast agent.

In FABBER_DSC it is this final
estimated signal that is compared to the data and used to find the optimal parameters using a Bayesian
inference algorithm. Additionally the potential for a time delay between the supplied AIF (often
measured at a remote location from the tissue) and the tissue signal is included in the model.



The Modified Vascular Model

FABBER_DSC implements a modified version of the Vascular Model whereby the MTT is not pre-calculated
from the data, but instead is a further parameter to be estimated as part of the inference applied
to the data. This removes the risk of bias from the separate MTT calculation and
also allows for a separate macro vascular component to be implemented within the model.

The other model parameter is named lambda and is identified with \(\alpha\).
in the residue function model. Hence in it’s basic form the model contains three parameters:
CBF, MTT and lambda. An additional parameter delta can be used to model a delay in
the arrival of the arterial input.



Macro Vascular Contamination

FABBER_DSC has the option to include a macro vascular component to the model. This combines the estimated
concentration time curve from the (modified) vascular model with a scaled version of the AIF, where the
AIF is representative of contrast that is still within the large arteries during imaging and the scaling
is a (relative) measure of arterial blood volume.

The component is subject to a ‘shrinkage prior’ that
aims to provide a conservative estimate - so that this component is only included in voxels where the
data supports its inclusion, recognising that macro vascular contamination will be be universally
present within the brain, but only occur in voxels that contain large arteries.

The combination of
tissue and macro vascular contributions could be done in terms of the concentrations of contrast in the
voxel. However, since in DSC it is the T2* effect of the concentration that is measured, the summation
might be better done with the signals once their effect on T2* has been accounted for. FABBER_DSC offers
the option to do either, there is currently no clear evidence as to which is most physically accurate
and it is likely that both are an incomplete representation of the reality, see Chappell et al 3.



The CPI model 4

The CPI model (Control Point Interpolation) is an alternative model for the residue function \(R(t)\).
Rather than base this function on physical assumptions, the CPI model simply defines a finite number
of ‘control points’ \(C_n\) whose residue function values \(R(C_n)\) are allowed to vary as
model parameters. The full residue function is determined by fitting a natural spline curve to
these points with the constraint that \(R(0)\) = 1 (no loss of contrast agent at time zero).
In addition we expect \(R(t)\) to be a decreasing function, hence the \(C_n\) are modelled
by multiplicative factors each in the range \([0, 1]\) with \(R(C_{n+1}) = P_{n+1}R(C_n)\).

The CPI method allows great flexibility in the shape of the \(R(t)\) however this is at the cost
of larger numbers of model parameters.
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